Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hapipah Ali,^a Nur Ashikin Khamis,^a M. Sukeri. M. Yusof^b and Bohari. M. Yamin^b*

^aDepartment of Chemistry, University of Malaya, Kuala Lumpur, Malaysia, and ^bSchool of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Correspondence e-mail: bohari@pkrisc.cc.ukm.my

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.004 Å R factor = 0.032 wR factor = 0.087 Data-to-parameter ratio = 13.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

 $\ensuremath{\mathbb{C}}$ 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

Bis{µ-3-methoxy-N'-[1-(2-oxidophenyl)ethylidene]benzohydrazidato}bis[pyridinezinc(II)] pyridine solvate

The title compound, $[Zn_2(C_{21}H_{14}N_2O_3)_2(C_5H_5N)_2]\cdot C_5H_5N$, is dimeric *via* Zn–O bridging, with an average value for the Zn–O bonds of 2.027 (2) Å. The Zn···Zn separation is 3.1546 (5) Å. The molecule has a center of inversion and the coordination geometry of both Zn atoms is square pyramidal. Received 28 June 2004 Accepted 23 July 2004 Online 31 July 2004

Comment

The title compound, (I), obtained by recrystallization of $[Zn(C_{21}H_{14}N_2O_3)_2]$ from pyridine is isostructural with $[Zn(C_{13}H_9N_2O_2SCl)(C_5H_5N)]_2$ (Ali *et al.*, 2003), except for the presence of one solvated pyridine molecule (Fig. 1). The molecule is dimeric with an average Zn-O bridging distance of 2.027 (2) Å and a Zn1···Zn1ⁱ [symmetry code: (i) 2 - x, 2 - y, -z] separation of 3.1546 (5) Å, in agreement with the same distances [2.021 (2) and 3.1004 (5) Å, respectively] in the $[Zn(C_{13}H_9N_2O_2SCl)(C_5H_5N)]_2$ complex.

The complex in (I) has a center of inversion and the coordination geometry of both Zn atoms in the molecule is closer to square pyramidal than trigonal bipyramidal. Atoms O1, O3, O3ⁱ and N2 occupy the basal plane [maximum] displacement of 1.083 (2) Å for atom N2 from the mean plane] with atom N3 located at the apex of the pyramid. The N2-Zn1-N3 bond angle is 112.05 (8)°. The structural dimensions of the O,N,O-tridentate ligands (Table 1) are in normal ranges (Orpen et al., 1989; Allen et al., 1987) and are in agreement with other pyramidal zinc complexes. The methoxyphenyl group [O2/C1–C6; maximum deviation of 0.009 (3) Å for atom C5 from the mean plane] and the phenolate group [O3/C11-C16; maximum deviation of -0.028 (3) Å for atom C12 from the mean plane] are individually planar and make a dihedral angle of 36.85 (11)°. The coordinated pyridine ring (N3/C17-C21) makes dihedral angles with the methoxyphenyl and phenolate groups of 85.16 (13) and 80.38 (14)°, respectively. There is a weak intramolecular C-H···O interaction (Table 2) in the title complex.

Experimental

The title complex was synthesized by the template condensation of 2-hydroxyacetophenone (0.24 g, 1.8 mmol) and 3-methoxybenzhydrazide (0.30 g, 1.8 mmol) with zinc acetate dihydrate (0.20 g, 0.9 mmol) by refluxing and stirring in ethanol for 5 h. The yellow solid was filtered off and recrystallized from pyridine.

Z = 1

 $D_x = 1.437 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation Cell parameters from 5617

4005 independent reflections

3771 reflections with $I > 2\sigma(I)$

reflections $\theta = 1.5-25.0^{\circ}$ $\mu = 1.09 \text{ mm}^{-1}$ T = 293 (2) KBlock, pale yellow $0.46 \times 0.37 \times 0.20 \text{ mm}$

 $R_{\rm int} = 0.016$

 $\theta_{\rm max} = 25.0^{\circ}$

 $h = -10 \rightarrow 10$ $k = -9 \rightarrow 12$

 $l = -16 \rightarrow 16$

Crystal data

$[Zn_2(C_{21}H_{14}N_2O_3)_2(C_5H_5N)_2]$
C ₅ H ₅ N
$M_r = 1011.76$
Triclinic, $P\overline{1}$
a = 8.5896 (8) Å
b = 10.6112 (10) Å
c = 14.2017 (13) Å
$\alpha = 71.360 \ (2)^{\circ}$
$\beta = 73.261 \ (1)^{\circ}$
$\gamma = 79.670 \ (2)^{\circ}$
$V = 1169.11 (19) \text{ Å}^3$

Data collection

Bruker SMART APEX areadetector diffractometer ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.635, T_{\max} = 0.812$ 7209 measured reflections

Refinement

 $\begin{array}{ll} \text{Refinement on } F^2 & w = 1/[\sigma^2(F_o^2) + (0.0495P)^2 \\ R[F^2 > 2\sigma(F^2)] = 0.032 & w + 0.6076P] \\ wR(F^2) = 0.087 & \text{where } P = (F_o^2 + 2F_c^2)/3 \\ S = 1.04 & (\Delta/\sigma)_{\text{max}} < 0.001 \\ 4005 \text{ reflections} & \Delta\rho_{\text{max}} = 0.36 \text{ e } \text{\AA}^{-3} \\ 307 \text{ parameters} & \Delta\rho_{\text{min}} = -0.36 \text{ e } \text{\AA}^{-3} \\ \text{H-atom parameters constrained} \end{array}$

Table 1

Selected geometric parameters (Å, °).

Zn1-O3	2.0125 (14)	O1-C8	1.277 (3)
Zn1-O1	2.0147 (16)	O3-C11	1.341 (2)
Zn1-N3	2.0488 (19)	N1-C8	1.314 (3)
Zn1-O3 ⁱ	2.0540 (15)	N1-N2	1.396 (3)
Zn1-N2	2.0576 (18)	N2-C9	1.290 (3)
$Zn1-Zn1^{i}$	3.1546 (5)		
O3-Zn1-O1	103.59 (6)	N3-Zn1-O3 ⁱ	104.80 (7)
O3-Zn1-N3	102.82 (7)	O3-Zn1-N2	144.21 (7)
O1-Zn1-N3	101.35 (7)	O1-Zn1-N2	77.77 (7)
O3-Zn1-O3 ⁱ	78.26 (6)	N3-Zn1-N2	112.05 (8)
$O1-Zn1-O3^{i}$	152.68 (7)	O3 ⁱ -Zn1-N2	85.17 (7)

Symmetry code: (i) 2 - x, 2 - y, -z.

Table 2

Hydrogen-bonding geometry (Å, °).

$\overline{D-\mathrm{H}\cdots A}$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
C16−H16A···O1	0.93	2.30	3.133 (3)	148

The molecular structure of the title compound, shown with 50% probability displacement ellipsoids.

After their location in a difference map, all H atoms were positioned geometrically and allowed to ride on the parent C atoms, with C-H = 0.93-0.96 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(C)$.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1997); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

The authors thank the Malaysian Government and both Universiti Malaya and Kebangsaan Malaysia for research grants IRPA Nos. 09-02-03-0125 and 09-02-02-993, respectively.

References

- Ali, H. M., Omar, R. S., Yusof, M. S. M. & Yamin, B. M. (2003). Acta Cryst. E59, m1118-m1120.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1–83.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97, SHELXL97 and SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Siemens (1996). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.