Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hapipah Ali, ${ }^{a}$ Nur Ashikin Khamis, ${ }^{\text {a }}$ M. Sukeri. M. Yusof ${ }^{\text {b }}$ and Bohari. M. Yamin ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, University of Malaya, Kuala Lumpur, Malaysia, and ${ }^{\mathbf{b}}$ School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Correspondence e-mail:
bohari@pkrisc.cc.ukm.my

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.032$
$w R$ factor $=0.087$
Data-to-parameter ratio $=13.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0] Printed in Great Britain - all rights reserved

Bis $\left\{\mu\right.$-3-methoxy- N^{\prime}-[1-(2-oxidophenyl)ethylidene]benzohydrazidato\}bis[pyridinezinc(II)] pyridine solvate

The title compound, $\left[\mathrm{Zn}_{2}\left(\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\right] \cdot \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$, is dimeric via $\mathrm{Zn}-\mathrm{O}$ bridging, with an average value for the $\mathrm{Zn}-\mathrm{O}$ bonds of 2.027 (2) \AA. The $\mathrm{Zn} \cdots \mathrm{Zn}$ separation is 3.1546 (5) \AA. The molecule has a center of inversion and the coordination geometry of both Zn atoms is square pyramidal.

Comment

The title compound, (I), obtained by recrystallization of $\left[\mathrm{Zn}\left(\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}\right)_{2}\right]$ from pyridine is isostructural with $\left[\mathrm{Zn}\left(\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SCl}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)\right]_{2}$ (Ali et al., 2003), except for the presence of one solvated pyridine molecule (Fig. 1). The molecule is dimeric with an average $\mathrm{Zn}-\mathrm{O}$ bridging distance of 2.027 (2) \AA and a $\mathrm{Zn} 1 \cdots \mathrm{Zn} 1^{\mathrm{i}}$ [symmetry code: (i) $2-x$, $2-y,-z]$ separation of 3.1546 (5) \AA, in agreement with the same distances [2.021 (2) and 3.1004 (5) \AA, respectively] in the $\left[\mathrm{Zn}\left(\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SCl}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)\right]_{2}$ complex.

The complex in (I) has a center of inversion and the coordination geometry of both Zn atoms in the molecule is closer to square pyramidal than trigonal bipyramidal. Atoms $\mathrm{O} 1, \mathrm{O} 3, \mathrm{O} 3^{\mathrm{i}}$ and N 2 occupy the basal plane [maximum displacement of 1.083 (2) Å for atom N2 from the mean plane] with atom N3 located at the apex of the pyramid. The N2$\mathrm{Zn} 1-\mathrm{N} 3$ bond angle is 112.05 (8) ${ }^{\circ}$. The structural dimensions of the O, N, O-tridentate ligands (Table 1) are in normal ranges (Orpen et al., 1989; Allen et al., 1987) and are in agreement with other pyramidal zinc complexes. The methoxyphenyl group [O2/C1-C6; maximum deviation of 0.009 (3) A for atom C5 from the mean plane] and the phenolate group [O3/C11C16; maximum deviation of -0.028 (3) \AA for atom C12 from the mean plane] are individually planar and make a dihedral angle of $36.85(11)^{\circ}$. The coordinated pyridine ring (N3/C17C21) makes dihedral angles with the methoxyphenyl and phenolate groups of 85.16 (13) and $80.38(14)^{\circ}$, respectively. There is a weak intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interaction (Table 2) in the title complex.

Received 28 June 2004 Accepted 23 July 2004 Online 31 July 2004

Experimental

The title complex was synthesized by the template condensation of 2-hydroxyacetophenone $(0.24 \mathrm{~g}, \quad 1.8 \mathrm{mmol})$ and 3 -methoxybenzhydrazide $(0.30 \mathrm{~g}, 1.8 \mathrm{mmol})$ with zinc acetate dihydrate $(0.20 \mathrm{~g}$, 0.9 mmol) by refluxing and stirring in ethanol for 5 h . The yellow solid was filtered off and recrystallized from pyridine.

Crystal data

$\left[\mathrm{Zn}_{2}\left(\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\right]--$	$Z=1$
$\quad \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$	$D_{x}=1.437 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=1011.76$	Mo $K \alpha$ radiation
Triclinic, $P \overline{1}$	Cell parameters from 5617
$a=8.5896(8) \AA$	reflections
$b=10.6112(10) \AA$	$\theta=1.5-25.0^{\circ}$
$c=14.2017(13) \AA$	$\mu=1.09 \mathrm{~mm}^{-1}$
$\alpha=71.360(2)^{\circ}$	$T=293(2) \mathrm{K}$
$\beta=73.261(1)^{\circ}$	Block, pale yellow
$\gamma=79.670(2)^{\circ}$	$0.46 \times 0.37 \times 0.20 \mathrm{~mm}$
$V=1169.11(19) \AA^{\circ}$	
Data collection	
Bruker SMART APEX area-	4005 independent reflections
\quad detector diffractometer	3771 reflections with $I>2 \sigma(I)$
ω scans	$R_{\text {int }}=0.016$
Absorption correction: multi-scan	$\theta_{\text {max }}=25.0^{\circ}$
$\quad(S A D A B S ;$ Sheldrick, 1996)	$h=-10 \rightarrow 10$
$T_{\text {min }}=0.635, T_{\text {max }}=0.812$	$k=-9 \rightarrow 12$
7209 measured reflections	$l=-16 \rightarrow 16$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.087$
$S=1.04$
4005 reflections
307 parameters
H-atom parameters constrained

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0495 P)^{2}\right. \\
+0.6077 P] \\
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.36 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.36 \mathrm{e}^{-3}
\end{gathered}
$$

Table 1
Selected geometric parameters ($\AA{ }^{\circ},{ }^{\circ}$).

$\mathrm{Zn} 1-\mathrm{O} 3$	$2.0125(14)$	$\mathrm{O} 1-\mathrm{C} 8$	$1.277(3)$
$\mathrm{Zn} 1-\mathrm{O} 1$	$2.0147(16)$	$\mathrm{O} 3-\mathrm{C} 11$	$1.341(2)$
$\mathrm{Zn} 1-\mathrm{N} 3$	$2.0488(19)$	$\mathrm{N} 1-\mathrm{C} 8$	$1.314(3)$
$\mathrm{Zn} 1-\mathrm{O} 3^{\mathrm{i}}$	$2.0540(15)$	$\mathrm{N} 1-\mathrm{N} 2$	$1.396(3)$
$\mathrm{Zn} 1-\mathrm{N} 2$	$2.0576(18)$	$\mathrm{N} 2-\mathrm{C} 9$	$1.290(3)$
$\mathrm{Zn} 1-\mathrm{Zn} 1^{\mathrm{i}}$	$3.1546(5)$		
$\mathrm{O} 3-\mathrm{Zn} 1-\mathrm{O} 1$	$103.59(6)$	$\mathrm{N} 3-\mathrm{Zn} 1-\mathrm{O} 3^{\mathrm{i}}$	$104.80(7)$
$\mathrm{O} 3-\mathrm{Zn} 1-\mathrm{N} 3$	$102.82(7)$	$\mathrm{O} 3-\mathrm{Zn} 1-\mathrm{N} 2$	$144.21(7)$
$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{N} 3$	$101.35(7)$	$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{N} 2$	$77.77(7)$
$\mathrm{O}^{2}-\mathrm{Zn} 1-\mathrm{O}^{\mathrm{i}}$	$78.26(6)$	$\mathrm{N} 3-\mathrm{Zn} 1-\mathrm{N} 2$	$112.05(8)$
$\mathrm{O}_{1}-\mathrm{Zn} 1-\mathrm{O}^{\mathrm{i}}$	$152.68(7)$	$\mathrm{O}^{\mathrm{i}}-\mathrm{Zn} 1-\mathrm{N} 2$	$85.17(7)$

Symmetry code: (i) $2-x, 2-y,-z$.

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 16-\mathrm{H} 16 A \cdots \mathrm{O} 1$	0.93	2.30	$3.133(3)$	148

Figure 1
The molecular structure of the title compound, shown with 50% probability displacement ellipsoids.

After their location in a difference map, all H atoms were positioned geometrically and allowed to ride on the parent C atoms, with $\mathrm{C}-\mathrm{H}=0.93-0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1997); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

The authors thank the Malaysian Government and both Universiti Malaya and Kebangsaan Malaysia for research grants IRPA Nos. 09-02-03-0125 and 09-02-02-993, respectively.

References

Ali, H. M., Omar, R. S., Yusof, M. S. M. \& Yamin, B. M. (2003). Acta Cryst. E59, m1118-m1120.
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. \& Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1-83.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97, SHELXL97 and SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

[^0]: © 2004 International Union of Crystallography

